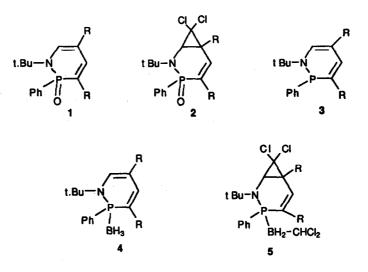
Reaction of Dichlorocarbene with 1,2-Dihydro 1,2 λ^3 -Azaphosphinine-Boranes : Dichlorocyclopropanation and Insertion into Boron-Hydrogen Bond.

Christian Bedel and André Foucaud*

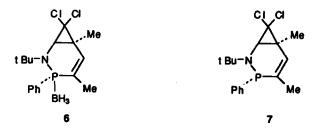

Laboratoire de Physicochimie Structurale, associé au CNRS, Université de Rennes, Campus de Beaulieu, 35042 Rennes, France.

Key words : Phosphine-boranes, cyclopropanation, carbene insertion into B-H bond.

Abstract - The reaction of dichlorocarbene with 1,2-dihydro 1,2 λ^3 -azaphosphinine-boranes gave regioselective dichlorocyclopropanation and also insertion of dichlorocarbene into B-H bond. This insertion reaction is general and can be a useful synthetic method for the preparation of functionalized phosphine-boranes.

Recently, we have shown that the regioselective dichlorocyclopropanation of 1,2-dihydro 1,2azaphosphinine 2-oxides 1 with dichlorocarbene afforded 2¹. However, the reaction of dichlorocarbene with 1,2-dihydro 1,2 λ^3 -azaphosphinines 3 failed. We report here the synthetic approach to dichlorocarbeneazaphosphine adducts using azaphosphinine-boranes as P- protected starting products.

The phosphine-borane complexes can be obtained by reaction of phosphines with H₃B-SMe₂^{3,4}. The azaphosphinine-boranes 4 have been prepared in almost quantitative yield by the reaction of 1,2-dihydro 1,2 λ^3 -azaphosphinines 3² with H₃B-SMe₂ in dichloromethane ⁵. The reaction of dichlorocarbene with 4 under phase transfer conditions gave the adducts 5⁶. The regioselective cyclopropanation (addition of dichlorocarbene on C₅-C₆ double bond of 4) was accompanied by insertion of dichlorocarbene into B-H bond to yield a dichloromethylsubstituted borane. When a shorter time of reaction of dichlorocarbene with 4**a** was used (30 min.), 4**a**, 5**a** and 6 were obtained as major products. Compound 6, which arises only from the cyclopropanation, was purified by chromatography on silica gel. Then, the formation of 6 shows that the cyclopropanation of 4**a** is a faster reaction than the insertion reaction of dichlorocarbene into B-H bond.



a:R=Me; b:R=Et; c:R=Pr

	¹ H NMR	H NMR δ (JpH) (300 MHz)			¹³ C NMR δ (J _{PC}) (75 MHz)					¹¹ B NMR
Compd	H-4	Н-6	CHCl ₂	C-3	C-4	C-5	C-6	C-7	δ (121MHz)	δ (J _{BP}) (96 MHz)
(23.5)	(11)		(60.7)	(7.5)	(8)				(63)	
4b	6.49	6.25		121.1	127.8	118.6	133.9		45.6	-34.7
	(27)	(9)		(58,7)	(7.1)	(10.2)				(66)
4c	6.47	6.23		120.0	128.8	117.4	135.4		45.2	-34.6
	(25)	(11)		(58.0)	(7.3)	(8)				(69)
5aA ^a	6.35	2.91	5.74	129.9	136.2	33.5	49.6	70.1	23.2	-20.9
	(22)	(2.4)	(9)	(59.9)		(12.3)	(5.7)	(3.6)		(59)
5aB ^a	6.28	2.89	5.66	·. ·					37.9	-22.9
	(21)	(3)	(12)							
5bA ^a	6.45	2.95	5.74	136.3	132.5	37.5	49.4	70.0	23.6	-20.7
	(24)	(4)	(8.5)	(56.8)		(12)	(4.9)	(4.7)		(60)
5cA ^a	6.44	2.93	5.75	134.4	131.8	36.9	49.4	70.1	23.5	-21.4
	(24)	(3)	(8)	(56.6)		(12)	(4.8)			(76)
6	6.14	3.02	/	128.5	130.9	34.5	51.4	69.7	39.2	-35.9
	(21.7)	(2.2)		(46)	(6)	(11)	(5.5)			(57)
7	5.79	2.88		138.0	127.1	35.7	49.6	70.8	8.2	
	(10)			(4.8)						

Table. Selected spectral data for 4, 5, 6 and 7 in CDCl₃

^a The ¹³C NMR signals of CHCl₂ of 5 (δ = 72 ppm) were broad.

As dichlorocarbene may attack the double bond of 4 from the two sides of the diastereotopic face of the six membered ring, adducts 5 may be formed in two diastereoisomeric forms A and B, separated by chromatography (silica gel, 1 : 12 diethyl ether/petroleum ether). The A : B ratio determined on the crude reaction mixture by ¹H NMR was 10 : 1 for 5a and 3 : 1 for 5b and 5c. Treatment of 6 with dichlorocarbene gave 5aA. Structures of 4, 5 and 6 were determined by IR, ¹H NMR, ¹³C NMR, ³¹P NMR, ¹¹B NMR and MS spectral analyses (table). Mass spectra indicate M⁺ and [M-BH₃]⁺ for 4 and [M-BH₂CHCl₂]⁺ for 5. Furthermore, the borane group of the major isomer 5a A should be readily removed by treatment with diethylamine to give 7 with retention of configuration at phosphorus atom ⁷. Oxidation of 7 with H₂O₂ yielded 2aA, identical with major isomer obtained by the cyclopropanation of 1a ¹. It has been shown by single crystal X-ray crystallography that the cyclopropane ring and the phenyl group of 2aA are on the opposite side of the six membered ring ¹. The higher preference for the formation of the isomer A can be explained by the prefered addition of the dichlorocarbene on the less sterically hindered face of the ring of 4. When the steric requirement of the R group increases, the repulsive interaction between C₅-R group and phenyl group in the transition state increases and the A:B ratio decreases.

This unprecedented insertion reaction of dichlorocarbene into B-H bond of phosphine-boranes is general. Thus, the phosphine-borane complexes 8a-c were prepared according to the procedure reported for complexes 4. The reaction of dichlorocarbene with 8 was accomplished using the procedure reported for the preparation of 5. At room temperature for 30 min., 8a gave 9a (60 %). In the same conditions, 8b was converted to 9b in 62 % yield. When the reaction of dichlorocarbene with 8b was performed at 40°C for 30 min, a mixture of 9b (30 %) and 10b (40 %) was obtained. The triisopropylphosphite-borane 8c, treated with dichlorocarbene at 40°C for 1 h gave a mixture of 9c (40 %) and 10c (60 %). 9 and 10 were separated by flash chromatography on silica gel (ether - petroleum ether) ⁸.

 $R_3P - BH_3$ $R_3P - BH_2 - CHCl_2$ $R_3P - BH(CHCl_2)_2$

 8 a-c
 9 a-c
 1 0 b-c

 a : R = Ph ; b : R = 4.Me-CeH4 ; c : R = iPrO
 C : R = iPrO

In conclusion, the regioselective dichlorocyclopropanation of 1,2-dihydro 1,2 λ^3 -azaphosphinine has been achieved. We have also found that the insertion reaction obtained from treatment of phosphineboranes with dichlorocarbene can be a new and general method for the preparation of functionalized boranes.

References and notes :

- 1 Wai Tan, W. H-L.; Foucaud, A.; Bedel, C. Bull. Soc. Chim. Fr., in press.
- 2 Wai Tan, W.H-L.; Bourdieu, C.; Foucaud, A. Tetrahedron, 1990, 46, 6715.
- 3 Schmidbauer, H.; Wimmer, T.; Reber, G.; Müller, G. Angew. Chem. Int. Ed. Engl. 1988, 27, 1071.
- 4 Schmidbauer, H.; Weiss, E. Angew. Chem. Int. Ed. Engl. 1981, 20, 283. Schmidbauer, H.; Wimmer, T.; Lachmann, J.; Müller, G. Chem. Ber. 1991, 124, 275.
- 5 The typical procedure is as follows : a solution of azaphosphinine 3 (2 mmol) in dry CH₂Cl₂ (15 ml) was added to a 1M solution of H₃B-SMe₂ (2 ml), the mixture was heated to reflux for 1 h, then the solvant was evaporated to provide 4.
- 6 A solution of 4 (1 mmol) and triethylbenzylammonium chloride (50 mg) in alcohol free chloroforme (10 ml) was added to 50 % aqueous sodium hydroxide (3.2 g). The mixture was stirred at 40°C for 2 h. The organic layer was separeted, washed with water and dried. The solvent was evaporated off and 5 was purified by chromatography on silica gel.
- 7 Imamoto, T.; Oshiki, T.; Onozawa, T.; Kusumoto, T.; Sato, K. J. Am. Chem. Soc. 1990, 112, 5244.
- 8 Selected data for 9 and 10. 9a, F = 134°C. ¹H NMR δ 5.53 (1H, dt, J = 6, 5.8 Hz, CHCl₂). ³¹P NMR δ 20.2; ¹¹B NMR δ -22.3. 9b oil, ¹H NMR δ 5.49 (1H, dt, J = 5.6, 5.6 Hz, CHCl₂). ³¹P NMR δ 9.2; ¹¹B NMR 22.4. 9c oil. ¹H NMR δ 5.56 (1H, dt, J = 4.4 Hz, CHCl₂); ³¹P NMR δ 88.6; ¹¹B NMR 12.02. 10b F = 157°C. ¹H NMR δ 5.56 (1H, dd, J = 10.4 Hz, CHCl₂). ³¹P NMR δ 8.46; ¹¹B NMR δ -12.02. 10c oil. ¹H NMR δ 5.67 (1H, dd, J = 16,4 Hz, CHCl₂). ³¹P NMR δ 74.7; ¹¹B NMR δ =-23.5. These compounds have satisfactory analytical data.

(Received in France 10 September 1992)